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Abstract 
 In this paper, a new analytical approach has been presented for solving strongly nonlinear oscillator problems. 
Iteration perturbation method leads us to high accurate solution. Two different high nonlinear examples are also 
presented to show the application and accuracy of the presented method. The results are compared with analytical 
methods and with the numerical solution using Runge-Kutta method in different figures. It has been shown that the 
iteration perturbation approach doesn't need any small perturbation and is accurate for nonlinear oscillator equations. 
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1. Introduction 

 The solution of differential equations in physics and engineering, especially some oscillation equations are 
nonlinear, and in most cases it is difficult to solve such equations, especially analytically. Recently, several scientific 
papers were devoted to approximate analytical approximate solutions for nonlinear oscillators. Some approximate 
approaches have proposed to solve strongly nonlinear differential equations such as homotopy perturbation method 
[1-3], energy balance method [4-6], frequency amplitude formulation [7, 8], parameter expansion method [3, 9], 
variational iteration method [10, 11], max min approach [12, 13] hamiltonian approach [14-16], variational approach 
[17, 18], and other new methods [19-27]. 

The main propose of this paper is to obtain highly accurate analytical solution for free vibrations of strongly 
nonlinear oscillators. The iteration method solution has been compared with others method and numerical solution 
using Runge-Kutta method of order four. The results will show its effective and convenient approximate solution. 

The paper has been organized as follows. In Section 2, we present the analytical procedure. In Section 3, we 
applied iteration procedure for solving two important applications. Section 4 provides some comparisons between 
analytical and numerical solutions. In conclusion, in the last section the most important findings of the paper have 
been presented. 

 
2. Solution Procedure 

We consider a generalized nonlinear oscillator in the form: 
( , , ) 0,u f u u u                                         (1) 
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with initial conditions: 

(0) , (0) 0.u A u                                  (2) 
  Based on He's frequency-amplitude formulation approach [28, 29]. The trial function to determine the angular 

frequency   is given by  
cos .u A t                                           (3) 

Substituting from Eq. (3) into Eq. (1), one can obtain the following residual as 
2 2( ) cos ( cos , sin , cos ).R t A t f A t A t A t                         (4) 

Introducing a new function, ( )H t , defined as [30]  

0
2( ) ( )cos( ) 0, .TH t R t t dt T                               (5) 

 Solving the above equation, the relationship between the frequency and amplitude of the oscillator can be 
obtained. 

 
3. Applications 

In order to assess the advantages and the accuracy of the iteration procedure, the following two examples
 are considered. 
3.1 The Motion of a Rigid Rod Rocking Back 

The motion of a rigid rod rocking back and forth on the circular surface without slipping. The governing
 equation of motion can be expressed as [31-34]. 

222
2

1 1 1 cos 0, (0) , (0) 0,12 16 16 4
d u du g duu u u u u Adt dt L dt

                        (6) 

where 0, 0g L   are known positive constants. 
By using the following trial function to determine the angular frequency  : 

cos .u A t                                             (7) 
Substituting Eq. (7) into Eq. (6) results in, the following residual 

 
 

2 4 2 2 2
1536

2 4 2 2 4

( ) 384 144 10 128 48 cos
48 5 48 cos3 cos5 .

A LR t g A g A g L L A t
A g A g A L t A g t

  
  

    
    

          (8) 

Using Eq. (8) into Eq. (5), we can easily obtain  
2 / 2 4 2 2
0( ) ( ) cos (192 72 5 ) 8(8 3 ) 0.768

AH t R t tdt A A g A LL
                 (9) 

Solving the above equation, an approximate frequency   as a function of amplitude A  as follow: 

 2 4

2
192 72 5 .8 (8 3 )

A A g
L A                                      (10) 

Hence, the approximate solution can be readily obtained 
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 2 4

2
192 72 5( ) cos .8 (8 3 )

A A gu t A tL A
       

                            (11) 

 
3.2 Tapered Beams 

Tapered beams can model engineering structures which require a variable stiffness along the length, such as 
moving arms and turbine blades. In dimensionless form, the governing differential equation corresponding to 
fundamental vibration mode of tapered beams is given by [35, 36]. As we see in the geometry of problem in Fig. 1, 

1m is mass of the block on the horizontal surface, 2m  is the mass of block which is just slipped in the vertical and is 
linked to 1m , L is length of link, g is gravitational acceleration, and k is spring constant [37, 38].  

By assuming , 1xu uL  , the equation of motion can be yield as following terms: 
22 22 32 2 2 2

2 2
1 1 1 1 1

u 0.2
m m m g m gd u d u du ku u udt m dt m dt m Lm Lm

                                                (12) 

The initial conditions for Eq. (12) are given by (0)u A and 
. (0) 0u  . Here u and t  are generalized 

dimensionless displacement and time variables. 
 

 
Fig. 1 Geometric of the tapered beams 

 The use of Eqs. (3-5), and (12) leads to the relationship between amplitude and angular frequency. 
2

2 2
2

1 2

8 8 3 .8 4
kL gm A gm

m L A m L                             (13) 

Hence, the approximate solution can be readily obtained as: 
2

2 2
2

1 2

8 8 3( ) cos .8 4
kL gm A gmu t A tm L A m L

      
                  (14) 

4. Results and Dissection  
  In this section, an approximate technique is developed based on He’s frequency-amplitude formulation and 

He’s energy balance method to solve strongly nonlinear differential equations. The solutions for two nonlinear 
problems show a good agreement with the numerical solutions using Runge-Kutta method.  

In Fig. 2 the comparison between Analytical solutions and Runge-Kutta method is shown. As we see, the results 
are compared with amplitude frequency formulation [32], energy balance method [33, 34] and with an accurate 
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numerical solution, using fourth order Runge-Kutta method to show the accuracy of the method. It has been 
indicated that the present method has excellent agreement with the numerical solution. It is a simple method and easy 
to apply to any kind of nonlinear vibration problems. 

 
 

  

0.25 , 1, 1A g L    0.25 , 10, 1A g L    

  
0.35 , 1, 1A g L    0.15 , 1, 1A g L    

Fig 2. The comparison between analytical solution (….), energy balance method (- - -), amplitude frequency formulation 
(        ) and numerical solution (    ). 

 Fig. 3 represents the comparison of the analytical solution with the numerical solution for different parameters in 
two cases to show the accuracy of the method. It has been shown that the results of analytical approximate solution is 
the same with those obtained from the results of the max-min approach [37], amplitude frequency formulation [37, 
38], energy balance method [38], and have a high validity in comparison with the numerical solution using fourth 
order Runge-Kutta method. 

  

  
1 26 , 9.81, 100, 5, 1, 1A g k m m L       1 26 , 9.81, 300, 10, 2, 0.5A g k m m L       

Fig 3. The comparison between analytical solutions (.......) and numerical solution (    ). 
5. Conclusion 

Based on He’s frequency-amplitude formulation and He’s energy balance method, a new analytical technique has 
been presented to determine approximate solutions of some strongly nonlinear differential equations. In compared 
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with the previously published methods, determination of solutions is straightforward and simple. In comparison to 
forth-order Runge-Kutta method, which is powerful numerical solution, the results show that the present method is 
very convenient for solving nonlinear equations and also can be used for strong nonlinear oscillators. 
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